Use of Uninitialized Resource

The product uses or accesses a resource that has not been initialized.


When a resource has not been properly initialized, the product may behave unexpectedly. This may lead to a crash or invalid memory access, but the consequences vary depending on the type of resource and how it is used within the product.


The following examples help to illustrate the nature of this weakness and describe methods or techniques which can be used to mitigate the risk.

Note that the examples here are by no means exhaustive and any given weakness may have many subtle varieties, each of which may require different detection methods or runtime controls.

Example One

Here, a boolean initiailized field is consulted to ensure that initialization tasks are only completed once. However, the field is mistakenly set to true during static initialization, so the initialization code is never reached.

private boolean initialized = true;
public void someMethod() {

  if (!initialized) {

    // perform initialization tasks

    initialized = true;


Example Two

The following code intends to limit certain operations to the administrator only.

$username = GetCurrentUser();
$state = GetStateData($username);
if (defined($state)) {
  $uid = ExtractUserID($state);

# do stuff
if ($uid == 0) {

If the application is unable to extract the state information - say, due to a database timeout - then the $uid variable will not be explicitly set by the programmer. This will cause $uid to be regarded as equivalent to "0" in the conditional, allowing the original user to perform administrator actions. Even if the attacker cannot directly influence the state data, unexpected errors could cause incorrect privileges to be assigned to a user just by accident.

Example Three

The following code intends to concatenate a string to a variable and print the string.

char str[20];
strcat(str, "hello world");
printf("%s", str);

This might seem innocent enough, but str was not initialized, so it contains random memory. As a result, str[0] might not contain the null terminator, so the copy might start at an offset other than 0. The consequences can vary, depending on the underlying memory.

If a null terminator is found before str[8], then some bytes of random garbage will be printed before the "hello world" string. The memory might contain sensitive information from previous uses, such as a password (which might occur as a result of CWE-14 or CWE-244). In this example, it might not be a big deal, but consider what could happen if large amounts of memory are printed out before the null terminator is found.

If a null terminator isn't found before str[8], then a buffer overflow could occur, since strcat will first look for the null terminator, then copy 12 bytes starting with that location. Alternately, a buffer over-read might occur (CWE-126) if a null terminator isn't found before the end of the memory segment is reached, leading to a segmentation fault and crash.

Example Four

This example will leave test_string in an unknown condition when i is the same value as err_val, because test_string is not initialized (CWE-456). Depending on where this code segment appears (e.g. within a function body), test_string might be random if it is stored on the heap or stack. If the variable is declared in static memory, it might be zero or NULL. Compiler optimization might contribute to the unpredictability of this address.

char *test_string;
if (i != err_val)

  test_string = "Hello World!";
printf("%s", test_string);

When the printf() is reached, test_string might be an unexpected address, so the printf might print junk strings (CWE-457).

To fix this code, there are a couple approaches to making sure that test_string has been properly set once it reaches the printf().

One solution would be to set test_string to an acceptable default before the conditional:

char *test_string = "Done at the beginning";
if (i != err_val)

  test_string = "Hello World!";
printf("%s", test_string);

Another solution is to ensure that each branch of the conditional - including the default/else branch - could ensure that test_string is set:

char *test_string;
if (i != err_val)

  test_string = "Hello World!";
else {

  test_string = "Done on the other side!";
printf("%s", test_string);

See Also

Comprehensive Categorization: Resource Lifecycle Management

Weaknesses in this category are related to resource lifecycle management.

CISQ Quality Measures - Reliability

Weaknesses in this category are related to the CISQ Quality Measures for Reliability. Presence of these weaknesses could reduce the reliability of the software.

SEI CERT C Coding Standard - Guidelines 03. Expressions (EXP)

Weaknesses in this category are related to the rules and recommendations in the Expressions (EXP) section of the SEI CERT C Coding Standard.

Comprehensive CWE Dictionary

This view (slice) covers all the elements in CWE.

CISQ Data Protection Measures

This view outlines the SMM representation of the Automated Source Code Data Protection Measurement specifications, as identified by the Consortium for Information & So...

Weaknesses Introduced During Implementation

This view (slice) lists weaknesses that can be introduced during implementation.

Common Weakness Enumeration content on this website is copyright of The MITRE Corporation unless otherwise specified. Use of the Common Weakness Enumeration and the associated references on this website are subject to the Terms of Use as specified by The MITRE Corporation.